A novel approach to estimate trabecular bone anisotropy using a database approach.

نویسندگان

  • Javad Hazrati Marangalou
  • Keita Ito
  • Matteo Cataldi
  • Fulvia Taddei
  • Bert van Rietbergen
چکیده

Continuum finite element (FE) models of bones have become a standard pre-clinical tool to estimate bone strength. These models are usually based on clinical CT scans and material properties assigned are chosen as isotropic based only on the density distribution. It has been shown, however, that trabecular bone elastic behavior is best described as orthotropic. Unfortunately, the use of orthotropic models in FE analysis derived from CT scans is hampered by the fact that the measurement of a trabecular orientation (fabric) is not possible from clinical CT images due to the low resolution of such images. In this study, we explore the concept of using a database (DB) of high-resolution bone models to derive the fabric information that is missing in clinical images. The goal of this study was to investigate if models with fabric derived from a relatively small database can already produce more accurate results than isotropic models. A DB of 33 human proximal femurs was generated from micro-CT scans with a nominal isotropic resolution of 82 µm. Continuum FE models were generated from the images using a pre-defined mesh template in combination with an iso-anatomic mesh morphing tool. Each element within the mesh template is at a specific anatomical location. For each element within the cancellous bone, a spherical region around the element centroid with a radius of 2mm was defined. Bone volume fraction and the mean-intercept-length fabric tensor were analyzed for that region. Ten femurs were used as test cases. For each test femur, four different models were generated: (1) an orthotropic model based on micro-CT fabric measurements (gold standard), (2) an orthotropic model based on the fabric derived from the best-matched database model, (3) an isotropic-I model in which the fabric tensor was set to the identity tensor, and (4) a second isotropic-II model with its total bone stiffness fitted to the gold standard. An elastic-plastic damage model was used to simulate failure and post failure behavior during a fall to the side. The results show that all models produce a similar stress distribution. However, compared to the gold standard, both isotropic-I and II models underestimated the stress/damage distributions significantly. We found no significant difference between DB-derived and gold standard models. Compared to the gold standard, the isotropic-I models further underestimated whole bone stiffness by 26.3% and ultimate load by 14.5%, while these differences for the DB-derived orthotropic models were only 4.9% and 3.1% respectively. The results indicate that the concept of using a DB to estimate patient-specific anisotropic material properties can considerably improve the results. We expect that this approach can lead to more accurate results in particular for cases where bone anisotropy plays an important role, such as in osteoporotic patients and around implants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mandibular Trabecular Bone Analysis Using Local Binary Pattern for Osteoporosis Diagnosis

Background: Osteoporosis is a systemic skeletal disease characterized by low bone mineral density (BMD) and micro-architectural deterioration of bone tissue, leading to bone fragility and increased fracture risk. Since Panoramic image is a feasible and relatively routine imaging technique in dentistry; it could provide an opportunistic chance for screening osteoporosis. In this regard, numerous...

متن کامل

Prediction of Trabecular Bone Anisotropy from Quantitative Computed Tomography Using Supervised Learning and a Novel Morphometric Feature Descriptor

Patient-specific biomechanical models including local bone mineral density and anisotropy have gained importance for assessing musculoskeletal disorders. However the trabecular bone anisotropy captured by high-resolution imaging is only available at the peripheral skeleton in clinical practice. In this work, we propose a supervised learning approach to predict trabecular bone anisotropy that bu...

متن کامل

A Novel Integrated Approach to Modelling of Depletion-Induced Change in Full Permeability Tensor of Naturally Fractured Reservoirs

More than half of all hydrocarbon reservoirs are Naturally Fractured Reservoirs (NFRs), in which production forecasting is a complicated function of fluid flow in a fracture-matrix system. Modelling of fluid flow in NFRs is challenging due to formation heterogeneity and anisotropy. Stress sensitivity and depletion effect on already-complex reservoir permeability add to the sophistication. Horiz...

متن کامل

Orthotropic Properties of Trabecular Bone Determined by Adaptation Models

Bone adaptation algorithms that predict the relationship between bone loads and density assume that bone is effectively isotropic. The isotropic assumption cannot explain bone anisotropy and directionality, which are evident from the trabecular architecture. We have modeled the trabecular bone in the proximal femur as effectively orthotropic. Instead of determining the density distribution, we ...

متن کامل

A novel approach to estimate trabecular bone anisotropy from stress tensors.

Continuum finite element (FE) models of bones and bone-implant configurations are usually based on clinical CT scans. In virtually all of these models, material properties assigned to the bone elements are chosen as isotropic. It has been shown, however, that cancellous bone can be highly anisotropic and that its elastic behavior is best described as orthotropic. Material models have been propo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 46 14  شماره 

صفحات  -

تاریخ انتشار 2013